Buradasınız : Research / Journal Papers
Türkçe
English
Pazartesi, 10.08.2020
  • Ufuk Yolcu, Eren Bas, Erol Egrioglu,A new fuzzy inference system for time series forecasting and obtaining the probabilistic forecasts via subsampling block bootstrap,Journal of Inelligent and Fuzzy System, 35(2), 2349-2358. (SCIE)

  • Sarica B., Egrioglu E., Asikgil B.,A New Hybrid Method for Time Series Forecasting: AR-ANFIS,Neural computing & Applications, 29(3), 749-760.,(SCIE)

  • Eren Bas, Crina Grosan, Erol Egrioglu, Ufuk Yolcu,High order fuzzy time series method based on pi sigma neural network, Journal Engineering Applications of Artificial Intelligence,72, 350-356.,SCI

  • Nihat Tak, A. Atıf Evren, Müjgan Tez, Erol Eğrioğlu,Recurrent Type-1 Fuzzy Functions Approach for Time Series Forecasting, Applied Intelligence,48, 68-77., (SCI)

  • Ozge Cagcag Yolcu, Eren Bas, Erol Egrioglu, Ufuk Yolcu,Single Multiplicative Neuron Model Artificial Neural Network with Autoregressive Coefficient for Time Series Modelling, Neural Processing Letters, 47(3), pp. 1133-1147. (SCIE)

  • Akdeniz E., Egrioglu E., Bas E., Yolcu U.An ARMA Type Pi-Sigma Artificial Neural Network for Nonlinear Time Series Forecasting, Journal of Artificial Intelligence and Soft Computing Research, 8(2),121-132. (ESCI)

  • Bas E., Egrioglu E., Uslu V.R.,(2017) Shrinkage Parameters for Each Explanatory Variable Found Via Particle Swarm Optimization in Ridge Regression, Peertechz J Comput Sci Eng 2(1): 012-020.

  • Eygi Erdoğan B., Egrioglu E., Akdeniz E. (2017), Support Vector Machines vs Multiplicative Neuron Model Neural Network in Prediction of Bank Failures. American Journal of Intelligent Systems, 7(5), 125-131.

  • Inan D., Egrioglu E., Sarica B., Askın Ö.E.,, Tez M., 2017, Particle Swarm Optimization Based Liu-Type Estimator, Communication in Statistics: Theory and Methods, 2017, Vol.46, Issue 22, 11358-11369. (SCI)

  • Yolcu, U., Bas, E., 2016, The forecasting of labour force participation and the unemployment rate in Poland and Turkey using fuzzy time series methods, Comparative Economic Research,19(2), 5-25.

  • Cagcag O.,Yolcu U., Egrioglu E., Aladag C.H., (2016), A High Order Fuzzy Time Series Forecasting Method Based On Operation Of Intersection, Applied Mathematical Modelling, 40, 19-20, 8750-8765. (SCI)

  • Aladag C.H., Yolcu U., Egrioglu E., I. Burhan Turksen, (2016), Type-1 fuzzy time series function method based on binary particle swarm optimisation,International Journal of Data Analysis Techniques and Strategies, 8(1), 2-13.

  • Egrioglu E., Bas E., Aladag C.H., Yolcu U., (2016), Probabilistic Fuzzy Time Series Method Based onArtificial Neural Network, American Journal of Intelligent Systems,6(2), 42-47.

  • Gündoğdu, Ö., Egrioglu, E., Aladağ, Ç. H. & Yolcu, U. (2016). Multiplicative Neuron Model Artificial Neural Network Based on Gauss Activation Function. Neural Computing and Application, 27, 927-935.(SCI)

  • Bas E., Uslu V.R., Egrioglu E. (2016) Robust learning algorithm for multiplicative neuron model artificial neural networks, Expert Systems with Applications, 56, 80-88. (SCI)

  • Erol Egrioğlu, Cagdas Hakan Aladag, Ufuk Yolcu, Ali Zafer Dalar (2016). A Hybrid High Order Fuzzy Time Series Forecasting Approach Based on PSO and ANNs Methods, American Journal of Intelligent Systems, 6(1): 22-29.